Permutation Correction in the Frequency Domain in Blind Separation of Speech Mixtures

نویسندگان

  • Christine Servière
  • Dinh-Tuan Pham
چکیده

This paper presents a method for blind separation of convolutive mixtures of speech signals, based on the joint diagonalization of the time varying spectral matrices of the observation records. The main and still largely open problem in a frequency domain approach is permutation ambiguity. In an earlier paper of the authors, the continuity of the frequency response of the unmixing filters is exploited, but it leaves some frequency permutation jumps. This paper therefore proposes a new method based on two assumptions. The frequency continuity of the unmixing filters is still used in the initialization of the diagonalization algorithm. Then, the paper introduces a new method based on the time-frequency representations of the sources. They are assumed to vary smoothly with frequency. This hypothesis of the continuity of the time variation of the source energy is exploited on a sliding frequency bandwidth. It allows us to detect the remaining frequency permutation jumps. The method is compared with other approaches and results on real world recordings demonstrate superior performances of the proposed algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blind Source Separation of Convolutive Mixtures of Speech in Frequency Domain

This paper overviews a total solution for frequencydomain blind source separation (BSS) of convolutive mixtures of audio signals, especially speech. Frequency-domain BSS performs independent component analysis (ICA) in each frequency bin, and this is more efficient than time-domain BSS. We describe a sophisticated total solution for frequency-domain BSS, including permutation, scaling, circular...

متن کامل

Generalized Method for Solving the Permutation Problem in Frequency-Domain Blind Source Separation of Convolved Speech Signals

The blind speech separation of convolutive mixtures can be performed in the time-frequency domain. The separation problem becomes to a set of instantaneous mixing problems, one for each frequency bin, that can be solved independently by any appropiated instantaneous ICA algorithm. However, the arbitrary order of the estimated sources in each frequency, known as permutation problem, has to be so...

متن کامل

Blind separation of speech mixtures based on nonstationarity

This paper presents a method for blind separation of convolutive mixtures of speech signals, based on the joint diagonalization of the time varying spectral matrices of the observation records and a novel technique to handle the problem of permutation ambiguity in the frequency domain. Simulations show that our method works well even for rather realistic mixtures in which the mixing filter has ...

متن کامل

Using information theoretic distance measures for solving the permutation problem of blind source separation of speech signals

The problem of blind source separation (BSS) of convolved acoustic signals is of great interest for many classes of applications. Due to the convolutive mixing process, the source separation is performed in the frequency domain, using independent component analysis (ICA). However, frequency domain BSS involves several major problems that must be solved. One of these is the permutation problem. ...

متن کامل

A dynamic algorithm for blind separation of convolutive sound mixtures

We study an efficient dynamic blind source separation algorithm of convolutive sound mixtures based on updating statistical information in the frequency domain, and minimizing the support of time domain demixing filters by a weighted least square method. The permutation and scaling indeterminacies of separation, and concatenations of signals in adjacent time frames are resolved with optimizatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2006  شماره 

صفحات  -

تاریخ انتشار 2006